CHEM 1012 CHEMISTRY IN THE ARTS AND ARCHAEOLOGY

Lecture: 3 hours per week Credits: 3

The CUNY-BC China program "STUDY IN CHINA"

Examples of the arts and archaeological artifacts will be taken from Chinese art museums and other Chinese art / archeological sources.

TEXTBOOK

"Chemistry and Artists' Colors", Mary V. Orna and Madeline P. Goldstein, 3rd edition, 2013.

ADDITIONAL MATERIALS

"Traces of the Past: Unraveling the Secrets of Archaeology through Chemistry", by J. B. Lambert, Basic Books; 1998.

"Doing Chemistry at the Art/Archaeology Interface", Mary Virginia Orna, Journal of Chemical Education, Volume 74, Number 4, April 1997, 373-376.

Selected scientific articles available on-line from CUNY libraries

COURSE DESCRIPTION

General background in basic concepts of chemical structure and activity, with an emphasis on examples from the visual arts and archaeology. Topics include the nature of color; color mixing; chemical properties, synthesis and use of dyes, pigments, paints, metals, ceramics, glasses and glazes; chemical analysis of archaeological artifacts; the chemistry of art preservation and authentication of art objects; and the chemical hazards in the arts.

GENERAL EDUCATION OBJECTIVES

Use analytical reasoning skills and apply logic to understand the scientific study of materials used in the construction of works of art, and methods used in investigations of archaeological artifacts and works of art.
Integrate knowledge to qualitatively and quantitatively understand the connection between chemistry and the arts and archaeology.

- Become knowledgeable in how to properly and safely handle potentially hazardous chemicals that artists use in their daily operation.

- Identify the problems related to the arts and archaeology, such as art and artifacts deterioration and forgery, and use scientific methods learned in the course to find solutions to these everyday life problems.

- Communicate clearly through speaking, writing, and reading.

OUTCOMES ANTICIPATED FOR COURSE

At the end of the course, students understand the basic facts, principles, theories and methods of chemistry. They are able to balance chemical equations, understand the principle of conservation of mass, interpret graphs in the lay literature, understand the problems associated with materials and methods used in the arts and archaeology, and discuss the chemical principles knowledgeably. Students understand key events in the history of science and recognize that science is an evolving body of knowledge. Students recognize the social and cultural implications of scientific discoveries and understand the potential of science and technology to address problems of the contemporary world.

METHOD OF ASSESSMENT

Assessment of students' knowledge of the course material: Specific questions designed to address the course material will be included in in-class problem sets, class exams and the final exam. The outcome of these specific questions will report on students' understanding of terminology and concepts associated with chemical compounds, chemical methods and techniques in the field of the arts and archaeology.

Assessment of students' communication skills: During the semester, students will complete four reports and one oral presentation.

METHOD OF EVALUATION

In-class problem sets will be assigned, discussed and logged in. Two midterm exams will be given, after 3 weeks, and after 9 weeks. A comprehensive final exam will be given. Four group projects (groups of 2-3 students) will be assigned, and students will prepare four written reports. Based on one of these reports, a PowerPoint presentation will be prepared. These presentations will available on Blackboard to all students; they will be presented by students during last three classes. Both the written reports and oral presentations will be graded.

The FINAL GRADE will be determined as follows:

Class participation (in-class problem sets):	15%
Two midterm exams:	25%
Written reports (4 projects):	20%
Oral presentation:	15%
Final exam	25%

ACADEMIC INTEGRITY

Academic dishonesty is prohibited in the City University of New York. Cheating, plagiarism, internet plagiarism and obtaining unfair advantages are violations of policies of academic integrity and are punishable by penalties, failing grades, suspension and expulsion. For more information about CUNY policy on academic integrity see http://web.cuny.edu/academics/info-central/policies/academic-integrity.pdf

STUDENT DISABILITY SERVICES

In order to receive disability-related academic accommodations students must first be registered with the Center for Student Disability Services. Students who have a documented disability or suspect they may have a disability are invited to set up an appointment with the Director of the Center for Student Disability Services, Ms. Valerie Stewart-Lovell at 718-951-5538. If you have already registered with the Center for Student Disability Services please provide your professor with the course accommodation form and discuss your specific accommodation with him/her.

COURSE OUTLINE

Chapters from: "Chemistry and Artists' Colors", Mary V. Orna and Madeline P. Goldstein, 3rd edition, 2013.

Week	Readings	Topics	Hrs
1	Ch. 1-3	1. Introduction to Light and Color	3
		Electromagnetic Radiation and Electromagnetic	
		Spectrum	
		Measurement and Metrics, Exponential Notation	
		Wave/Particle Theory of Electromagnetic Radiation	
	Ch. 4-6	2 Visible Light	
		Wavelength, Frequency and Color	
		Properties of Light: Refraction, Reflection, Bending	
		Project 1: How Rainbows work?	
2	Ch. 7-8	3. Energy and Composition of Matter	3
		Energy States	
		Atoms and Elements	
		Sub-atomic Particles and Isotopes	
		Electrons in Atoms and Atomic Orbitals	
3	Ch. 9	4. Interaction of Light with Matter	3
		Transmittance and Absorption of Light	
		Why objects Appear Colored	
		Color Wheel	
		Beer/Lambert Law	
	Ch. 11-12	5. Colored Objects	
		Subtractive vs. Additive Color Mixing, Color Wheel	
		Pure/Impure Colors	
4		Exam 1	1.5
4, 5	Ch. 13	6. Chemistry Alphabet and Vocabulary	3
		Chemical Symbols, Names of Chemical Elements	
		Chemical Formulas, Names of Chemical Compounds	
		Chemical Equations Illustrate Chemical Reactions	
		7. The Periodic Table and Periodic Properties	
	Ch. 14	Project 2: "Elements Are Everywhere" Crossword Puzzle	1.5
6, 7	Ch. 15	8. Electrons in Atoms	6
		Electron Configurations	
	Ch. 16	9. Chemical Compounds	
		Chemical Bonding: Ionic vs. Covalent	
		Molecules and Chemical Compounds	
		Colored Chemical Compounds	
		Types of Chemical Reactions	
	Suppl.	10. Oxidation Reduction Reactions	
	Articles	Metal Etching	
		Corrosion	
-	~	Metals in the History of Art and Technology	
8	Ch. 17	11. Dyes	1.5
	CI 10	Dye Adhesion, Natural Dyes, Fiber-Reactive Dyes	
	Ch. 18	12. Pigments	
		Artists' Pigments and Commercial Pigments	1.5

		Project 3: Inorganic and Organic Pigments	
9	Ch. 19	13. Paints	1.5
		Oil Paints	
		Acrylic Paints	
		Tempera Paints	
		Water Colors	
		Gouache Paints	
9		Exam 2	1.5
10, 11	Ch. 23	15. Artists' Safety	1.5
		Chemical Hazards in the Arts	
	Suppl.	16. Deterioration of Materials and Art Conservation	3
	Articles	Environmental Effects: Acid rain, Photolysis, Erosion,	
		Humidity changes, Paper problems	
		Art Preservation and Restoration	
11, 12	Suppl.	17. Authentication of Art Objects	3
	Articles	Famous Forgeries Detected using Chemistry	
		Project 4: Chemical Art Detective	
12, 13	Suppl.	18. Chemical Analysis of Archaeological Artifacts	3
	Articles	14C Isotope Dating	
		Identification of Materials	
		X-ray diffraction and fluorescence	
13, 14		Projects Presentations	4.5
		Final Exam	