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CONSERVATIVE FORCE SYSTEMS 
 

Purpose 

a. To investigate Hooke’s law and determine the spring constant. 

b. To study the nature of conservative force systems using a spring-mass system as an example. 

 

Theory 

I. Hooke’s law and Spring constant 

When an object of mass m is attached at the lower end of a vertical spring, it elongates and 

comes to equilibrium. From Hooke’s law, the spring force F = - kΔX, where ΔX is the displacement 

(elongation) of the spring from its unstretched position as shown in the Figure 1, and k is the spring 

constant. The minus sign shows that the force F acts in such a direction as to reduce the magnitude of 

the displacement.  At the equilibrium position the spring force is balanced by the weight of the object 

attached.  We are assuming an ideal (non-dissipative) spring with negligible mass. Thus 

  kΔX = mg.         (1)  

In the first part of this lab, we will investigate this relation and determine the spring constant for a 

spring.  

 

II.  Conservation of Energy   

In a conservative force system the work 

done by the force can be expressed as the 

negative of the change in the potential energy (Wc 

= - ΔU). Potential energy decreases (increases) 

when a conservative force does positive 

(negative) work. Thus the total mechanical energy 

(kinetic plus potential energy) is always 

conserved.  

 We can calculate the kinetic and potential 

energies by measuring the velocities and 

positions of a mass attached to the spring using a 

motion detector. 

 a.  What other information do you need to 

calculate the kinetic energy? 

b.   What other information do you need to 

calculate the spring potential energy? 

 c.   What other information do you need to 

calculate the gravitational potential energy?  

When the hanging mass is stretched down and released, it will oscillate about the equilibrium 

position. The kinetic energy is given by 

  KE = 
1

2
 mv

2
.           (2)  
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Figure 1. Spring-mass system in (a) equilibrium 

and (b) oscillating. xo, xem and x(t) are positions  

of the bottom of the hanger.  

(a)                (b) 
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 Since the hanging mass is oscillating vertically, it involves both the gravitational and the spring 

potential energies. The spring potential energy, us, is given by 

   us =  

1

2
𝑘(Δx)

2
,         (3)  

where  Δx is the displacement (elongation) of the lower end of the spring relative to its unstretched 

position  x0  at any time t and is measured positively upward (see Figure 1).  Note that the spring 

potential energy (us) is zero when it is unstretched.   

Now, assuming the gravitational potential energy is zero when x = xem (We can make this 

assumption since it is only differences in potential energy that will be physically significant.), at 

arbitrary x is given by 
  ug = mg(x-xem).                                                                                               (4) 

See Figure 1a.          

 In our experiment x at any time t will be measured positively upward from a motion detector to 

the bottom of a hanger. Thus, the total mechanical energy is 

  Total Energy = 
1

2
 mv

2
 + mg(x-xem) + 

1

2
𝑘(Δx)

2
.     (5) 

The spring force and the gravitational force are conservative forces. If there are no other forces 

acting on our system then, from the principle of conservation of energy, the total energy is conserved; 

i.e., the total energy does not change.  In part II of this lab we will investigate this experimentally. 

One can show that the total energy is equal to 

  
1

2
kA

2 
+ 

1

2
k(ΔX)

2
 + mgc = constant               (5.1) 

where A is the amplitude of the oscillation, ΔX is the elongation of the spring at equilibrium, and 

c is the distance from the bottom of  the hanger to the c.m. of the weights and hanger. 

To take into account the mass of the spring, heretofore ignored, replace m in  
1

2
 mv

2
 in Eqs. (2) 

and (5) by an effective mass  meff  = m + 
1

3
 msp,                             (6) 

where msp is the mass of the spring.                                                          

 

Apparatus 

Jolly balance, scale, spring, set of slotted weights (50 and 100 

grams), 50 gram slotted mass hanger, rulers, graph paper, motion 

detector, Vernier data acquisition system, Logger Pro software. 

 

Description of Apparatus 

 The Jolly balance was invented by the German physicist 

Philipp von Jolly in 1864.  This and the other apparatus that will be 

used in this laboratory are shown in Figure 2.  It consists of a 

movable arm at the top of a stand pipe. The movable arm has an 

engraved scale and can be moved up or down by rotating the knurled 

wheel at the bottom of the balance. A Vernier scale is also attached 

to increase the resolution of the measurement. A spring is fastened at 

the top of the movable arm and a weight hanger is hung at the lower 

end of the spring. It has a movable pointer attached on the stand to 

mark the position of the spring.  It also has a pan on which to put the 

motion detector. 

 

Motion detector 

LabQuest 

Knurled 

wheel 

Pointer 

Hanger 

Scale 
Spring 

Figure 2. Jolly balance and 

accessories.    
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  We will use a Vernier motion detector along with a LabQuest data acquisition device to 

determine the position and velocity of the hanger with respect to time while oscillating. From the data of 

position and velocity we will plot the graphs of kinetic and potential energies to investigate the 

conservation principle.  

Procedure 

Part I. Setting up the apparatus and determining the spring constant (k) 

1. Set the scale of the Jolly balance to zero position by adjusting the knurled wheel. Hang the spring 

on its movable arm if it is not already there. Adjust the pointer tip of the balance to the lowest 

point of the spring and lock in the position of the pointer. 

2. Find the mass of the hanger and place the hanger on the end of the spring. Because of the load, 

the spring elongates. In order to measure how much it is elongated, raise the Jolly balance using 

the knurled wheel until the lowest edge of the spring comes back to the tip of the pointer.  Read 

the scale of the Jolly balance to one-tenth of a millimeter using the Vernier scale and record it 

(ΔX) on the data sheet at the end of the write-up. 

3. Now you are going to repeat the previous step by adding masses on the hanger. Suggested total 

masses, m, (including the hanger) are 100, 150, 200, 250, 300 350, and 400 grams.  Record the 

scale readings (ΔX) on the data sheet. 

4. Before continuing with Part II below, go to the Computations section and determine the spring 

constant, k.

 

Part II. Measuring position and velocity 

You are going to use a motion detector to collect the data of the position and velocity of the 

hanging mass while oscillating. The motion detector should be connected to the LabQuest interface 

device and then to the computer to collect data.  Note that the motion detector collects data 

positively away from the detector. 

1. Place 350 grams on the hanger, so that m is 400 grams.  Find and record the mass of the spring, 

msp, and the effective mass, meff. 

2. Put the motion detector on the pan of the Jolly balance and adjust the position of the stand so that 

the bottom of the hanger is about 50 cm directly above the motion detector. The beam of the 

motion detector should be directed upward to the hanger (see Figure 2). 

3. Open Logger Pro in your computer. You have two empty graphs of position versus time and 

velocity versus time, and a table. Note the equilibrium position,  xem,  of the bottom of the hanger 

with the hanging mass from the motion detector and record (on the data sheet) its value shown in 

the lower left-hand corner.    

4. Now, raise or lower the hanger about 5-10 cm and release it gently.  Let it oscillate a few times 

so that the hanging mass oscillates vertically without much side-to-side motion.  If it is jiggling, 

try it again. (Too much compression or extension or pushing it away from the vertical may cause 

jiggling.) If the mass is oscillating nicely, collect data for position and velocity for a few cycles 

and save the data and graphs for further analysis.  Look at the graphs carefully.  Print the graphs 

and table.  (This is your data.) 

How does the velocity change with respect to time? 
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From the velocity versus time graph, can you tell how the acceleration changes with time? 

Locate the positions of the bottom of the hanger where the velocities are zeroes and maxima                 

(in magnitude).  Record them on the data sheet. 

From the position graph find the amplitude, A, of the oscillation.  Record it. 

Determine the time period T of the oscillation from position versus time graph by fitting the data 

with a sine function thereby obtaining ω = 2π/T.  Record your values of ω and T. 

 

The spring constant, mass, and period of oscillation, T, are related by means of the equation  

   𝑇 = 2𝜋√
𝑚𝑒𝑓𝑓

𝑘
                                                                                       (7) 

 

Find the spring constant k from Eq. (7) above.  Record it. 

 

Calculate the elongation  ∆𝑋 =
𝑚𝑔

𝑘
.  Record it. 

 

5. From the diagram (Figure 1) you should be able to see (with some thought) that Δx, the 

elongation of the spring at any time t, is given by 

  Δx = x – (xem + ΔX)                     (8) 

 where x is the distance from the motion detector (i.e., from x = 0).  (Hint:  Note that in this         

diagram Δx is negative, and we take ΔX to be a positive number.) 

 

Part III. Calculating and plotting kinetic energy and potential energies versus time 
 

You can calculate kinetic energy, spring potential and gravitational potential energies from the 

data you collected from the motion detector using the equations (2, 3, 4, and 8). 

 You have to plot the graphs of kinetic, spring potential and gravitational potential energies versus 

time for further analysis.  Include the graphs in your report. 

 You can copy your data and use Excel for calculating energies and plotting the graphs for 

further analysis. OR better yet follow the instructions given below. 

 Print the graphs in 3, 5, 6, 7, and 8 below after saving them. 

a. Plotting Kinetic Energy versus time graph 

1. On the computer in Logger Pro window, click 'New Calculated Column' under 'Data' menu.  

Name it 'Kinetic energy' (KE for short name) and 'Joules' in the units box. 

2. Under the ‘expression’, type the right hand side of the formula for kinetic energy (Eq. 2) as in 

any computer language.  (Hint: Use * for the multiplication sign and  ^ for power.)   Use meff for 

the mass. You may directly use the value for meff  or use it as a parameter and then substitute the 

value.  For v, click 'Variables (Columns)'and choose (velocity).  Do not forget to square the 

velocity in the expression!  Once it is done, this will add a column for you with calculated kinetic 

energy values corresponding to the time column. 

3. Now 'Insert' a new graph to display the Kinetic Energy (KE) versus time (t) graph and save the 

graph. 

 



Brooklyn College                                     5 
  

b. Plotting Potential Energy versus time graph 

You will be repeating the previous steps to plot graphs for potential energies. 

4. Let’s do it for the gravitational potential energy first. Add a 'New Calculated Column' under 

'Data' menu.  Name it 'Gravitational Potential Energy' (GPE for short name) and 'Joules' in the 

units box.  In the expression, this time you are going to use the equation for gravitational 

potential energy (Eq. 4).  For x, click 'Variables (Columns)' and choose (position).  This will add 

a column for you with calculated gravitational potential energy values corresponding to the time 

column. 

5. 'Insert' a new graph to display the Gravitational Potential Energy (GPE) versus time (t) graph 

and save the graph. 

6. Similarly, plot a graph for Spring Potential Energy (SPE). Use Eqs. 3 and 8 to write expression. 

 

c.  More plots    

                                                                                                                                                             

7.   Plot and save a graph of Total Potential Energy (GPE+SPE) versus time. 

8.   Plot and save a graph Total Energy (KE+GPE+SPE) versus time.  

Computations 

 From your data in Table 1, plot a graph of weight (mg) vs. spring elongation ΔX.   

Does the graph suggest a straight line for  mg = kΔX?   

Find the slope.  Determine the spring constant.  Record. 

Go to Part II. 

Calculate the time period from the value of k obtained from Part I. Explain sources of error.  

Analyze the graphs.  You should find the answers for all the questions given below. 

  

Questions 

1. How well does the spring obey Hooke’s law? 

2. Look carefully at the plots of KE vs t and PE vs t.  Locate the positions where the kinetic energy is 

maximum. Mark them on your graph.  What can you say about them? 

3. Locate the positions where the kinetic energy is zero.  Mark them on your graph.  What can you say 

about them? 

4. How does the gravitational potential energy vary in one cycle? 

5. How does the spring potential energy vary in one cycle? 

6. Compare the graphs of kinetic energy and of total potential energy (GPE+SPE).  Explain if there are 

any interesting features. 

7. How does the total energy (kinetic plus potential energies) change with time?  (In theory it should be 

constant.  One could show that it is equal to the sum of the KE and the spring and gravitational 

potential energies at the equilibrium position.) 
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8. Find your best value of the total energy and record it.  Estimate c and record it. (It should be 

approximately 0.016 m when m = 0.4 kg.)  Calculate the theoretical value given by Eq. (5.1) and 

record it.  Find and record the percent error. 

9. What do you expect the total energy to be after some time? 

10. How would the total energy versus time graph look if a non-conservative force, such as air 

resistance, becomes important? 

11. What can you conclude about conservation of total mechanical energy in a spring-mass system? 

12. If a large plate were taped to the bottom of the hanger and then the experiment was repeated, predict 

how the graph of the total energy vs. time would look like. 
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Data Sheet 

Date experiment performed: 

Names of the group members: 

Part I. 

 Table 1.   Hooke’s law and finding Spring constant 

m 

(kg)          

mg 

(N) 

ΔX 

(m) 

mg/ΔX 

(N/m) 

0.050    

0.100    

0.150    

0.200    

0.250    

0.300    

0.350    

0.400    

Spring constant, k from procedure of part I = __________________ N/m 

Part II.  Measuring position and velocity 

 m =____________ kg 

 Mass of spring  msp = ___________ kg 

 Effective mass meff  = m + 
1

3
msp = _________________ kg 

Position of equilibrium from motion detector, xem = _____________ m    

Zeroes of velocity at x = _______, _______, _______, _______ m 

Maxima (magnitude) of velocity at x = _______, _______, _______, _______ m 

A (amplitude) = _________ m 

ω = ___________  s
-1

    T = _____________s 

k (from Eq. (7) = ____________ N/m 

Elongation  ΔX = __________m 

Time period from value of k from part I =  

Measured total energy = _________________  J 

c = ___________________ m 

Theoretical total energy (Eq. 5.1) = ___________________ J 

% difference = ____________________ 


