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STANDING WAVES ON A STRING 
 

Purpose 

a. To investigate resonance conditions for a vibrating string. 

b. To study dependence of wavelength on the tension and linear mass density of the string. 

Theory 

 In any wave motion, wavelength () and frequency (f) of the wave is related by  

f

v
       (1)

where v is the velocity of the propagation of the wave. The velocity, v of a wave on a stretched string 

depends on the tension, T,  in the string and the mass per unit of the string ,, and is given by 

     
Tv        (2) 

If a stretched and vibrating string is clamped at both ends, like a guitar string, the wave reflects 

from the fixed ends and waves travel in both directions. The incident and reflected waves will combine 

according to superposition principle. When a proper amount of tension is applied along the string for a 

given length of the string, the waves travelling in opposite directions resonate and form a standing wave. 

Figure 1 shows two of the many possible modes of making standing waves on a string. In the figures, N 

indicates the locations the string is stationary, called 

nodes, and A indicates the locations the string is 

vibrating with maximum amplitude, called antinodes. 

Standing waves are discrete phenomena, meaning that 

they only occur at specific values of wavelength. 

The distance from a node to an adjacent node 

(or from an antinode to adjacent antinode) is half of the 

wavelength. In order to form a standing wave a 

resonance condition has to be satisfied: 

2

n
L     (3) 

where L is the length of the string and n is an integer. 

For the standing wave in Figure 1a, the value of n is 1, 

and the wave pattern is called the fundamental or first 

harmonic. For Figure 1b, the value of n is 3, and the 

wave pattern is called the third harmonic. 

In this experiment you will use a vibrator of constant frequency to vibrate the string. Your 

investigations involve making resonances of different modes by adjusting the length and tension in two 

different strings.  

Apparatus 

Two strings (about 2 m length), 120-cycle electric vibrator and C-clamp; weight hanger, one 50 gram 

slotted weight, twelve 100 gram slotted weights, hand stroboscope, and triple-beam balance.

Figure 1a. A first harmonic standing wave.  

harmonic. 

Figure 1b. A third harmonic standing wave. 
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Description of Apparatus 

 You will use a vibrator that consists of an 

electromagnet which causes a steel bar to vibrate at a 

fixed frequency of 120 Hz as shown in Figure 2a.  The 

vibrator is clamped on a lab table. One end of the string 

is tied to the vibrating bar.  The string is then passed 

over a light pulley wheel, and a weight hanger is 

attached to the other end. The weight on the hanger 

provides the tension in the string. You can slide the 

vibrator along the table, thus varying the length (L) of 

vibrating string. You will change the weight to change 

the tension in the string. A typical set up of this lab is 

shown in Figure 2b.  

When L is adjusted to approximately equal to a 

whole number of half-wavelengths, a resonant condition 

is set up in the string, and standing waves will be 

observed as shown in Figure 2. The distance D between 

adjacent nodes of the standing waves can be observed 

and measured, and is equal to one-half of the 

wavelength, λ. 

2


D   

Procedure 

1. Set the distance between the vibrating bar and the pulley to about 1 meter and clamp it loosely. 

2. Tie one end of the heavier string to the vibrating bar and the other end to the weight hanger. 

Add slotted weights to give a total hanging mass of 600 grams. 

3. Plug in the vibrator, loosen the clamp, and slowly slide the vibrator along the table (i.e., vary L) 

until a set of standing waves is formed. Note any change in the sound from the string as you near 

resonance. When a clear resonance pattern is observed with stable nodes and antinodes, clamp 

the vibrator to the table. 

4. Count the number of nodes and draw the wave pattern (not including the ends of the string at the 

pulley and vibrating bar. They are not truly nodes) that appear along the string. Measure the 

distance between the first and last of these nodes. Divide this distance by the number of half-

wavelengths observed to get your best estimate for D. Estimate the uncertainty in D. 

5. In order to check whether your measurement of D is independent of the number of standing 

waves on the string, loosen the clamp and slide the vibrator until another resonant length is 

found. Repeat Step 4. Do you get the same D, within your estimated uncertainty? 

6. Change the hanging weight, and repeat Steps 3 and 4. (You do not have to repeat Step 5 for each 

weight.) Use total masses (M) of 200 grams, 400 grams, 800 grams 1000 grams, and 1200 grams 

for this string and find D for each load. 

7. Unplug the vibrator, untie the heavier string, and weigh it on the balance. Then measure its 

length. Pay close attention to evaluating the uncertainty in these measurements. Compute μ from 

your measurements, and estimate its uncertainty. 

Figure 2a. Vibrator vibrating a string. 

Vibrator 

Clamp Vibrating string 

Figure 2b. Experimental set up. 
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8. Now, use the lighter string, and follow the above procedure to generate another table of D vs. 

total hanging mass M. In the case of the lighter string, use hanging masses of 100 grams, 200 

grams, 300 grams, and 400 grams. Weigh the lighter string, and compute μ for it. 

9. There should be a slotted disc (‘hand stroboscope’) on your table that can be used to view the 

wave. Spin the ‘stroboscope’ between your eye and the string so as to see the string through 

the slots at moments when the slots are horizontal. There will be instants when the string appears 

to be vibrating slowly enough to permit you to observe the relative phases of the adjacent 

antinodes. Explain your observation in your report. 

 

Computation and analysis 

The most obvious way to compare your experimental results with theory is to make a table 
of measured wavelengths λmeas using the fact that λmeas  = 2D. In the tables for both strings, compare 
λmeas with the corresponding calculated values of the wavelength λcalc which you can obtain in terms 
of M, g, and μ from the equations already discussed.  

A more comprehensive way to compare your data with theory comes from the fact that D2 

should be proportional to M, the total mass of the hanging weight, for each string. From your data 
tables, make a graph of D2 vs. M. Try to get the data for both strings on the same graph, using 
different plotting symbols for the two different strings. Draw the best straight-line fit through the 
data for each string. Include the origin on your straight lines. Find the slope, S, of each line, and 
estimate the uncertainties in the slopes. What are the units of the slopes?  

From the equations discussed, find the theoretical expression of the slope in terms of g, μ, 
and vibrating frequency, f. Calculate the theoretical values of the slope from the known values of g, 
μ, and f. Make sure the formula for your slope has the same units as those of your graphical 
estimates. Note that according to theory, S is inversely proportional to μ, so the product S μ should 
be same for both strings. What are the units of S μ? This product is a good quantity to compare 
with theory, since S μ contains all the major uncertainties of the experiment, while its theoretical 
value involves only g and f, which are known constants of the experiment. Make this comparison 
with theory for both strings, and discuss any discrepancies in the context of observational 
uncertainties. 

Questions 

1.  Which of your values of λmeas are closest to λcalc in terms of percentage discrepancies, and which are 

farthest away? What do you think is the most likely reason for this in terms of the significant 

uncertainties in your measurements? Describe your procedure for estimating these uncertainties. 

2.  What does it mean to say that S  is a more “comprehensive” way of comparing your experimental 

results with theory? 

3.  Why were you asked to include the origin in drawing the straight lines through your data points? 

How did you estimate the uncertainty in the slopes of your lines? 

4.  Why were you told not to count the two ends of the string as nodes when measuring D? 

5.  Why were you told to use different sets of hanging weights for the two different strings? 

6.  Describe your observations (with regard to both sound and sight) as you varied the length L, 

especially as you approached a resonance. 

7.  Another way of thinking of this experiment is as a measurement of gravitational acceleration g. 

Explain how this is true, and whether or not it is a good way of measuring g compared to other 

methods you know. 
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Data Sheet 

Date experiment performed: 

Name of group members: 

a. For heavier string  

Mass of heavier string: 

Length of the heavier string: 

Table 1.  

Trial Draw Standing 

wave pattern below 

Hanging mass, 

M (kg) 

Number of 

nodes 

Length 

(cm) 

D (cm) meas = 2D calc

        

        

        

        

        

        

        

        

        

 

b. For lighter string 

Mass of heavier string: 

Length of the heavier string: 

Table 2. 

Trial Draw Standing 

wave pattern below 

Hanging mass, 

M (kg) 

Number of 

nodes 

Length 

(cm) 

D (cm) meas = 2D calc 

        

        

        

        

        

      


