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Constant speed & graphs 
Purpose 

1. To learn how speed is related to distance and time and explore a method using photo gates to measure constant 

speed.  

2. To plot a graph of distance versus time, find the slope, and interpret it as a speed. 

Theory  
In one-dimensional motion the object moves along a straight line, for example along the x direction. If the object 

is changing its position uniformly with time it is in constant-velocity motion. Velocity is defined as the time rate of 

change of displacement. In the case of motion with constant velocity, the position of the object ( ) at time, t, can be 

determined as:  

                                       

where    is the initial position and   is the velocity. The quantity    –     gives the displacement. So, from Eq. (1),  

                 and therefore  

   
        

 
                              

or, in words, speed = distance travelled /time elapsed. In today’s lab the distance that we need to use is the distance 

traversed between two positions; i.e., the change in the distance. So we should really say  

speed = change in distance /elapsed time     (3) 

(That is why we write    in Eq. (1) and        in Eq. (2).) 

If we let the displacement,       , be represented by d (standing for the displacement, or change in distance) then we 

may write  

  =           (4) 

In today’s lab we will measure different values of d and t and present our data in a tabular form. We will use these data 

to plot a graph of d versus t. Since         or, equivalently,       , the speed   is the slope of the   vs.   graph 

which, theoretically, would be a straight line. 

Running the experiment (The data sheet for the experiment is on page 3 & appendix on graphs is on pages 4 & 5) 

Measuring constant speed 

1) Open the simulator https://www.walter-fendt.de/html5/phen/acceleration_en.htm  

Read the explanatory text written at the top of the simulator window. 

2) Set the acceleration to 0 m/s2. Set the initial velocity to 2.00 m/s. Keep the initial position 0.00 m. 

3) When you run the simulator all timers will count time starting from zero seconds. The car will move and as it passes 

through the green photo gate, this green photo gate will stop indicating the time at which the car reached it. Let us call 

this time   . The red photo gate is still running until the car reaches it, then it will stop counting. The reading of the red 

photo gate is the time for the car to reach that gate starting from 0 meters. Let us call this time    

4) Click and drag the green photo gate to set it at a position of 15 m. Let us call the position of this green gate   . 

5) Click and drag the red photo gate to set it at a position of 30 m. Let us call the position of the red photo gate  . See 

figure 1. 

https://www.walter-fendt.de/html5/phen/acceleration_en.htm
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6) Click Start. Observe the photo gates and the graphs of position and velocity (here we can regard the value of the 

velocity as the speed). You can ‘Pause’ the simulation after the car crosses the red photo gate. Record the time indicated 

by the green and the red photo gates in table 1. 

7) Change the position of the red photo gate to 35 m, then 40 m, 45 m, 50 m. Each time repeat step 6. Now you should 

have a total of 5 entries for times of red photo gate. Record them in the table in the data sheet.  

8) To find the time for the car to cross the distance between the green and red photo gates, simply subtract the time 

recorded by the green photo gate,    from the time recorded by the red photo gate,   :                                             

          

9) To find the distance traveled by the car between the green and red photo gates simply subtract the position of the 

green gate,    from the position of the red gate,  :  

         

10) Plot a graph of distance travelled   (on the y axis) versus    (on the x axis). Compute the slope. What does the slope 

represent? 

11) For each row in the table, calculate and record the speed (show your work): 

  
 

  
 

12) Notice that our values here are exact, since the simulator uses the theoretical equations in its programming code. If 

we were to perform the experiment in the lab, we would find that there are some fluctuations in the measured values 

and then we would take an average as our best estimate and there would be an uncertainty representing the spread of 

the measured values, as was explained in the last experiment, experiment 1.  

If the experiment was performed in the lab, there will also be a small difference between the value of the speed 

calculated from the slope of the graph and that calculated from average of  
 

  
 values. This is because the graph (best fit 

line) would then minimize error. 

Questions  

 

1. A cyclist bikes 215 km in 5.1 h (hours) at constant speed. What is her speed?  

2. A gun shoots a bullet with a speed of 612 m/s. How long does it take the bullet to hit target that is 2965 m away?  

  

 

Figure 1: Positions of green and red photo gates for trial 1. Image courtesy of 

Walter Fendt: https://www.walter-fendt.de/html5/phen/acceleration_en.htm  

https://www.walter-fendt.de/html5/phen/acceleration_en.htm
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Data Sheet 

Name:                                                                    Group:                                             Date experiment performed:  

Measuring constant speed 

Position of 
green gate    
(m) 

Position of 
red gate   
(m) 

       
(m) 

Reading of 
green gate    
(s) 

Reading of red 
gate               
(s) 

          
(s) 

   
 

  
     

(m/s) 

15 30      

15 35      

15 40      

15 45      

15 50      

 

Calculations of     (show your work here): 

 

 

 

 

Step 10) Slope of graph of   versus   :  

 

Answers to questions: 

1. 

 

 

2. 

 

  

 

 

 

Remember to always write the correct units and remember to include your graph of   versus    in your lab report and 

to show the slope calculation on the graph. 
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APPENDIX ON GRAPHS 

Quantities depend on other quantities: Your weight depends on your food intake, the Dow Jones average depends on 

interest rates, your grades depend on how hard you study, and the distance a ball rolls depends on how long it has been 

rolling.  

Of course, for all the above cases, life can be (and usually is) more complicated; other factors may enter in to influence 

your weight, the stock market, your GPA, or that rolling ball. But in the science game, we try to begin to study quantities 

by looking first at the major factors on which they depend.  

Once we see that a quantity (such as distance) seems to depend on another quantity (such as time) in a significant and 

reproducible way, we can start to get systematic. The first step is to measure distances for a number of times and to 

make a table of the results.  

Imagine that we now have a table of five pairs of numbers and that this table gives us the totality of information we 

have on this particular subject. Are we finished? Have we gotten as much as we can out of our data? The answer is no. 

We have the data. We have even organized it systematically. But we have not presented it to ourselves (or the scientific 

community) in the form that speaks most strongly to the imagination, i.e., that allows us to see the possibility of a 

pattern that might exist in the way distance depends on time. For that, we need to draw a graph.  

Graphs are mysterious things. When these five pairs of numbers are turned into five dots on a graph, something magic 

happens. We start asking questions: Do these points lie in a straight line? Do they form a curve? If I measure a new pair 

of points in a certain region of the graph, where would it lie? Do the points suggest a simple mathematical relationship 

between distance and time?  

So a graph is a stimulus for creating generalizations from a limited amount of specific information. It is not a tool for 

constructing an absolute proof of anything, because in forming our generalizations (or “laws”) we are making best 

guesses from looking at a finite number of data points, each of which, because it is measured, has a built-in uncertainty. 

The process of making such guesses is called induction, and it always carries some risks. Nevertheless, this is the tool 

with which science carves out new laws, and it has served us well.  

 

PLOTTING THE DATA: The first step in plotting a graph is to choose scales for each axis, i.e., you must select appropriate 

values for the smallest divisions or “boxes” on the 

graph paper. Start by drawing the vertical and 

horizontal axes on the paper, so that the origin is 

(usually) in the lower left hand section of the graph 

paper. (See Figure 2) Choose the divisions so as to 

make the graph as large as possible (Avoid the 

“postage stamp” graph!). A good rule of thumb for 

the graphs in these labs is to choose the divisions so 

that the largest point (highest values of distance 

and time) on the graph falls somewhere in the 

upper right-hand quadrant, as shown in Figure 2 

(You may have to try more than once to get the 

best presentation, whether landscape or portrait, so use pencil and eraser!). 

Now label the axes with the quantities being plotted (e.g., distance and time), including their units. Mark the position of 

each data point as carefully as you can with a small circle, a dot, or a dot enclosed by a small circle. Note the uncertainty 

of each point, as obtained when you measured it. If the uncertainty is large enough to plot (larger than the size of the 

dot or circle), indicate its size on the graph with a small vertical or horizontal line through the dot or with an error bar. 

Note that uncertainty can exist along either axis (e.g., significant uncertainty in both time and distance), so you might 

Figure 2: Setting up a graph 
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end up with a small cross through the point or with two perpendicular error bars. Note that in our simulation lab values 

were exact. 

The next job is to guess at the pattern which the dots seem to form, which may lead us to hypothesize a simple 

mathematical relationship between the quantities involved. This is called “fitting” the data to a curve, where the curve is 

the graphical expression of the assumed relationship. Note that, because of uncertainty in the data, the points may not 

fall exactly on a smooth curve or line, but may tend to scatter slightly. Nevertheless, experience has taught us to look in 

general for a smooth curve that comes close to the points, rather than to play connect-the-dots.  

 

PROPORTIONALITY. In these labs, we will mostly be trying to ‘fit’ our data with one simple type of curve—that of a 

straight line through the origin of the graph. Such a straight line is the graphical expression of a simple mathematical 

relationship between variables—that of proportionality.  

It is the assumption of proportionality that leads us to include the origin in our straight line fit: After all, if we think the 

distance a car moves may be proportional to the time it has been moving, it is completely reasonable to assume that if 

no time has passed (t = 0), then the ball has not moved any distance (d = 0), even 

if we have not actually been able to measure this point.  

So how do we “fit” a straight line to our data points? There are two approaches. 

Which one we use should depend on how well the points line up on the graph. 

In our case all the points should come out to be perfectly lying on a straight line 

passing through the origin point, (0,0). This is because, as mentioned in the 

experiment, our measurements are based on an exact simulation. The graph 

should look like figure 3. 

The slope of the line is a number of considerable interest to us, because it is a 

constant for a straight line, and it has been entirely determined by our 

measurements. In fact, the mathematical translation of the statement “d is 

proportional to t” is just the equation  

       

where   is some constant and is called the 

constant of proportionality in the equation. 

As you might have guessed,   is just the slope 

of our straight line. 

So once we measure it, we have completed 

the job of translating our “best fit” pattern 

into a mathematical expression.  

The slope can be measured from the graph as follows: select any 

point on the line you have drawn (but NOT the data points), 

preferably in the upper half of the graph for accuracy, and draw vertical and horizontal dashed lines to the axes, in order 

to find the coordinates of your selected point, as shown in the example in Figure 4. 

Note we have not drawn the data points, to emphasize that we are using the line to measure the slope. Locate the 

coordinates (value of d and t) of the point (marked on the graph with a + mark) 

 In an actual lab we encounter another case where not all the points lie on the straight line. In that case we draw the 

best fit. If the points seem to fit a straight line then draw the straight line that goes through or close to all the points (or 

error bars if there are any). If it doesn’t, make an “eyeball” fit of the data. A rule of thumb is that you have about as 

many points above your line as below your line. Measure the slope of that line. This gives you the “best” value. 

Figure 3: Example of graph with all 

points lining up along a straight line 

Figure 4: Finding the slope of a straight line 


